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This research program investigates boundary-layer receptivity in the leading edge region for

bodies with blunt leading edges. Receptivity theory provides the link between the unsteady distur-

bance environment in the freestream and the initial amplitudes of instability waves in the boundary

layer. This is a critical problem which must be addressed in order to develop more accurate pre-

diction methods for boundary-layer transition.

Previous analyses of leading-edge receptivity have been restricted to the case of a zero-thickness

flat plate in symmetric flow at low Mach number. Singular perturbation techniques were utilized,

based on a large Reynolds number for the unsteady motion (e = (cvu/U_)l/6 << 1). In this project

we are extending the theory to include the effect of a parabolic leading edge, and also the effect of

aerodynamic loading. The influence of nose bluntness enters through the parameter S = wr,/U_,

where r, is the nose radius of the parabola. Our theory assumes that S = 0(1).

Results for a symmetric base flow with a parallel acoustic disturbance are discussed in Ref. 1.

Only the salient points are reproduced here. The boundary layer structure is illustrated in Fig. 1.

Parabolic coordinates _, q are used throughout. The streamwise and transverse coordinates ( and r/

have been nondimensionalized by the convective wavelength, U_/w, and by eaU_/w, respectively.

Unlike the flat-plate case, the mean boundary layer equation must be solved numerically. This

was accomplished using a Keller Box method. The solution must then be matched to the large

asymptotic limit,

qd =( F(q)+2A_g(q)_v_ +(Btg+f(_)) +O(w -37=4) , to- Stir. (1)

IIere F(q) is the Blasius (flat-plate) solution, g = _F _ - F and f is the solution of a third-order

ODE. The numerical constant A_ is determined by the condition that vorticity decays exponentially

away from the body, but B_ can only be determined by comparison to the numerical solution. The

extraction of B1 is illustrated in Fig. 2.

Far downstream (( _, 1 ), the unsteady disturbance in the boundary layer is of the form

i=l

(2)

The functions '_, Vi are determined by the locatproperties of the geometry and the freestream dis-

turbance in the far-downstream region. For an acoustic freestream disturbance, _ corresponds to a

Stokes shear wave. The asymptotic eigensolutions ¢'i depend only on the downstream geometry and

are independent of the freestream disturbance. However, the coefficients C; are determined by the
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receptivity process which occurs in the region ( = O(1). Specifically, the first asymptotic eigenso-

lution _vl matches onto the Tollmien-Schlichting wave which becomes unstable farther downstream

in the boundary layer. Thus it is through Ct(S) that the freestream disturbance determines the

magnitude of the unstable disturbance, and hence C1 is called the receptivity coefficient.

The asymptotic eigensolutions tbi decay exponentially with downstream distance and they are

also inverse ordered, i.e., the ratio _'_/_;'i+1 becomes exponentially small for ( >> 1. Thus, it is

difficult to obtain C1 from a direct numerical solution of the Linearised Unsteady Boundary Layer

Equation (LUBLE). This problem is circumvented by extending the analysis and the numerical

solution to the complex ( plane and choosing arg(_) such that _/'1 grows exponentially. In this

region of the complex plane the asymptotic eigensolutions assume a normal ordering, with _'i

dominating both ¢ and the higher terms in theab0ve series. The Receptivity CoefFicient C1 (S) can

then be obtained by comparing the numerical results with the asymptotic form of 8h. Essentially,

the known analytical form of the asymptotic eigensolution is utilized to extrapolate the numerical

results to ( --- oo. For ( >> 1, the first asymptotic eigensolution has the form

)C )er(e)_'l'(l +bl_-°rr4 +b2_-llog2_+bz_-llog_+b4( -1 +... P(_7 (3)

where

V_ _ - 2A,_ + (2A_ + i - •

The fact that there are several terms in (3) which are similar in magnitude makes the extrapolation

difficult, and numerical integration must be continued up to very large values of_ to obtain accurate

estimates of the Receptivity Coefficient C1.

The variation of CI with S for an acoustic disturbance parallel to the body axis was given in

Ref. 1. A dramatic decrease in receptivity with increasing nose radius was reported. At 5' = 0.3 the

Receptivity Coefficient C1 drops to 10% of that for a fiat plate. The conclusion to be drawn is that

a favorable pressure gradient not only shifts the point of neutral stability further downstream, but

also inhibits the receptivity process. An asymptotic theory for small S has now been completed. In

this case the region close to the nose is quasi-steady and in the region ( = O(1), which dominates

the receptivity process, the body surface approaches a fiat plate. This analysis predicts an increase

in receptivity for smali S.

let(s) 1~ 16'_(0)1(1 + 3.13S). (4)

Comparison with numerical results (Fig. 3') shows that this is indeed true, but also reveals that

the S << 1 theory is useful only for very small S and that the maximum increase in IC l is only of

the order of 3%. The reason behind this increase is not fully understood. However, for all practical

purposes this very tocal increase can be ignored.

The Receptivity Coefficient has also been calculated for different types of freestream distur-

bances. In carrying out these calculations we take advantage of the fact that the evolution of the

unsteady disturbance (2) with downstream distance in the complex ( plane occurs in two distinct



stages. During the first stagethe unsteadydisturbancebecomesdominatedby the singleterm
C1 (S)_bl(q, _, S), which grows exponentially relative to the other terms in (2). Due to the exponen-

tial dependence only moderately large values of _ are necessary for this first stage to be completed.

The second stage corresponds to the evolution of the function ¢i according to the asymptotic form

(3). The higher-order terms in (3a) are algebraic and therefore become unimportant only for much

larger values of _. In extracting the Receptivity Coefficient for an acoustic disturbance parallel

to the body axis, it was necessary to continue the numerical computation out to distances where

(3) is dominated by the first few terms, ttowever, since this computation provides information

regarding the evolution of _, in the computations for other types of freestream disturbances it is

only necessary to extend the computations to the point where the first stage has been completed.

For an incoming acoustic disturbance at angle _ to the axis of symmetry, the Receptivity

Coefficient is given by

C_ (S) = cos _C_ (S) q- a _1_ sin _Cb (S) (5)

where a is the airfoil half-chord, non-dimensionalized by the convective wavelength. This is valid for

a >> e-2, ensuring that transition occurs towards the leading edge. The magnitudes and arguments

of Ca and Cb are plotted in Figs. 4 and 5. It is seen that the receptivity due to the asymmetric

component of the disturbance is much larger than that due to the symmetric component, but it also

reduces faster with S than the symmetric component. This is illustrated more clearly in Figures 6

and 7, where the total receptivity is illustrated for a realistic non-dimensional chord length, a = 225.

In Fig. 6 the variation ICll with incidence angle is illustrated for various values of nose radius. In

Fig. 7 the modulus of the receptivity is plotted against S for various acoustic incidence angles. For

small values of S, receptivity levels rise rapidly with increasing angle of incidence of the acoustic

wave. However at larger values of S, this increase is less marked. These results are for an airfoil

with no induced circulation due to the oblique disturbance. For a body with sharp trailing edge.

an additional contribution to the slip velocity due to enforcement of the unsteady Kutta condition

must be included. This will be calculated in the near future.

Work is now proceeding to determine the receptivity due to a convected vorticity gust. In

contrast to the flat-plate case, the vorticity is distorted by gradients in the inviscld flow field near

the leading edge. The slip velocity on the body due to the gust is obtained using Rapid Distortion

Theory.

We are also extending our theory to incorporate the influence of mean aerodynamic loading on

receptivity. This effect has been ignored in previous studies because loading is incompatible with

the zero-thickness, fiat-plate model. Aerodynamic loading produces an adverse pressure gradient on

the upper surface, and we anticipate that this may lead to a substantial increase in the Receptivity

Coefficient.

The asymptotic analysis of the steady and unsteady boundary layer flow in the nose region,

for an airfoil at non-zero angle of attack has now been completed. This will be published in detail

elsewhere. Here we give a few of the more important results. For an angle of attack c_, the steady



- boundarylayersolutionwelldownstreamof thenoseis givenby

tP_ (cosa+#) (F + pp + 2A,glogw (B,g+f) 2#q log w #r )w w 2 + w_ + w2 + 7 + 0(w-3_4) ' (6)

where tt = sina(a/S) 1/2 and w = cosa_ + g, and f,g,p,q,r are functions of 77 given by a set of

third-order ODEs. The stagnation point is given by w = 0.

As in the symmetric case, A1 is determined by the condition of exponential decay of vorticity,

but now depends on #. B1 (#) is determined by comparing numerical solutions to the asymptotic

solution. This has been carried out and B1 obtained for various values ofp. All the terms included in

the expansion of • are necessary in order to calculate the eigenfunction for the unsteady disturbance

in the boundary layer. However, the need to include so many terms in the expansion naturally

makes the analysis considerably more involved. Finally the asymptotic eigenfunction is found to

be

_ ,_ (1 + b_ -°?r4 + b2_ -_ log _ _ + bs_ -_ log_ + b4_ -_ + ...)_p(rl)e T(_) (Ta)

where

- - + + + (7b)
T(() = T,=o Y L b_ w w _ w3 ws

and a, b, c, d are known functions of #. The computer code used for the symmetric case is currently

being modified to solve this modified LUBLE. The first results are expected to be available in the

next month. For acoustic disturbances in the freestream, the coefficient of receptivity will now be

a function of three parameters, angle of attack, nose radius and acoustic angle of incidence.

In summary, our research to date has determined the influence of nose radius on leading-edge

receptivity for the case of symmetric flow past a parabolic leading edge. Results have been obtained

for a variety of acoustic freestream disturbances, and calculations for the case of vortical freestream

disturbances are presently being carried out. In addition, the asymptotic theory has been extended

to include the influence of mean aerodynamic loading in the leading-edge region, and the related

computer programs are presently being developed. This work will provide answers to fundamental

questions concerning leading-edge receptivity, i.e., the influence of the airfoil nose radius and mean

aerodynamic loading. These issues must be understood in order to apply receptivity theory to

realistic geometries.
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FigureCaptions

Figure 1. A schematicillustration of the boundarylayer structure
for a parabolicbody in a symmetricmeanflow. The three decks
in the Orr-Sommerfeldregionare (i) the viscouswall layer; (ii) the
maininviscidlayer; and(iii) theouter irrotational layer.

Figure 2. Plot of G(Z) = (logZ)-'Z([¢" - F"]/F"),7= o against

(log Z) -1, where Z = w 2. Comparison with the large w asymptotic

form yields BI _ 2.08.

Figure 3. Comparison of asymptotic and numerical results for very

small S. Numerical results are marked with squares.

Figure 4. Variation of the amplitude of the Receptivity Coefficients
as a function of Strouhal number, S. C_ and Cb are the Receptiv-

ity Coefficients for the symmetric and antisymmetric components of
freestream disturbance respectively.

Figure 5. Variation of the phase of the Receptivity Coefficients as a
function of Strouhal number, S.

Figure 6. Variation of [C] with acoustic incidence angle 0, for non-
dimensional airfoil chord length a = 225.

Figure 7. Variation of [C[ with S for _"arious acoustic incidence

angles, with the same airfoil chord length as Figure 6.



Figure i. A schematic illuatrationof the boundaxy layerstructure

for a p_abolic body in a symmetric mean flow. The _ee decks

in the Orr-Sommeffdd region axe (i)the viscousw_lllayer;(ii)the

ma_ inviscidlayer;a_d Oii)the outer irrotationMl_yer.
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Figure '2. Plot of G'(Z) = (]ogZ)-lZ([o ''- F"]/F")o=o against

(logZ) -I. where Z = w-'. Comparison with the large w asymptotic

form yields B_ -_ 2.08.
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Figure 3. Comparison of asymptotic and numerical results for very

small S. Numerical results are marked with squares.
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Figure 4. Variation of the amplitude of the Receptivity Coefficients

as a function of Strouhal number, S. Co and C_ are the Receptiv-

ity Coefficients for the symmetric and antisymmetric components of

freestream disturbance respectively.
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Figure 5. Variation of the phase of the Receptivity Coefficients as a

function of Strouhal number, S.
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Figure 6. Variation of ]('[ with acoustic incidence angle O. for non-

dimensional airfoil chord length a = 225.
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Figure 7. Variation of [C[ with S for warious acoustic incidence

angles, with the same airfoil chord length as Figure 6.


